New Drugs in AML

New version of old drugs

- CPX-351
- Topo II inhibitors (Vosaroxin)
- Epigenetic modifiers
 - HMA
 - HDAC
 - IDH1/2 inhibitors
 - DOT1L inhibitors
 - Bromo-domain inhibitors

- Inhibitors of signaling pathways
 - FLT3 inhibitors
 - PLK1 inhibitors (Volasertib)

Apoptosis inducers

- Bcl-2 inhibitors (ABT-199)
- Immunotherapy
 - AB conjugates (SGN-CD33A)
 - BiTEs
 - Vaccines
 - CAR-T

THE VALOR TRIAL

CR +CRp + CRi

Overall Survival: Intent-to-Treat

With permission from Ravandi F et al. Proc ASH 2014; Abstract LBA-6.

Phase 2 clinical trial of decitabine for elderly patients with *de novo* AML

DAC 20 mg/m² for 10 days every 4 weeks

AML, acute myeloid leukaemia; CR, complete remission; CRi, complete remission with incomplete haematological recovery of peripheral blood counts; DAC, decitabine

Blum et al. Proc Natl Acad Sci U S A. 2010;107:7473-8.

TP53 and decitabine in AML and MDS

Welch et al. N Engl J Med 2016;375:2023-6.

EORTC/GIMEMA AML1301 protocol

Allo-HSCT, allogeneic haematopoietic stem cell transplantation; AML, acute myeloid leukaemia; Ara-C, cytarabine; BM, bone marrow; CR, complete remission; D, day; DAC, decitabine; DNR, daunorubicin; EORTC, European Organisation for Research and Treatment of Cancer; GIMEMA, Italian Adult Haematological Malignancies Group; PD, progressive disease; PR, partial remission; Q4W, once every 4 weeks; SD, stable disease

IDH in AML

- IDH is a critical . metabolic enzyme in the citric acid cycle
- IDH1 in cytoplasm ٠ and IDH2 in mitochondria
- Cancer-associated ٠ IDHm produces 2hydroxyglutarate (2-HG) and blocks normal cellular differentiation

Memorial Sloan Kettering Cancer Center

Prensner and Chinnaiyan Nature, 2011

Current IDH inhibitors in Clinical Trials for Acute Myleoid Leukemia

- AG-221 (Agios/Celgene) IDH 2 inhibitor
- AG-120 (Agios) IDH1 inhibitor
- IDH-305 (Novartis) IDH1 inhibitor
- AG-881 (Agios/Celgene) Dual IDH1/IDH2 inhibitor
- FT-2102 (Forma) IDH1 inhibitor

Phase 1/2 Study Design – IDH2 inhibitor AG-221 (Celgene/Agios)

Key Endpoints:

- Safety, tolerability, MTD, DLTs
- Response rates as assessed by local investigator per IWG criteria
- Assessment of clinical activity

Baseline Characteristics

Data cut-off: 1 Sept 2015	All (N = 209)	RR-AML (n=159)
Age (years), median (range)	69 (19–100)	68 (19–100)
Gender, % M/F	56/44	50/50
IDH2 mutation, n (%)		
R140	146 (70)	109 (69)
R172	50 (24)	41 (26)
ECOG PS, n (%)		
0-1	161 (77)	120 (76)
2	41 (20)	34 (21)
Diagnosis, n (%)		
RR-AML	159 (76)	159 (100)
Untreated AML	24 (11)	-
MDS	14 (7)	-
Other	12 (6)	-
Number of prior Tx, median (range)	-	2 (1–6)

Response

	RR-AML (n = 159)	Untreated AML (n = 24)	MDS (n = 14)	All (N = 209)
Overall Response (CR, CRp, CRi, mCR, PR)	59 (37%)	10 (42%)	7 (50%)	79 (38%)
CR	29 (18%)	4 (17%)	3 (21%)	37 (18%)
CRp	1 (1%)	1 (4%)	1 (7%)	3 (1%)
CRi	3 (2%)	o	0	3 (1%)
mCR	9 (6%)	1 (4%)	3 (21%)	14 (7%)
PR	17 (11%)	4 (17%)	o	22 (11%)
SD	72 (45%)	9 (38%)	6 (43%)	96 (46%)
PD	10 (6%)	1 (4%)	0	11 (5%)
Not evaluable	18 (11%)	4 (17%)	1 (7%)	23 (11%)

Overall response by IDH mutation type: R140Q 36% / R172K 42%

Most Frequent Treatment Emergent Adverse Events (≥15% of patients)

	Any Grade	Grade ≥3
Preferred Term	%	
Nausea	32	2
Diarrhea	28	3
Fatigue	28	6
Hyperbilirubinemia	27	10
Decreased appetite	27	3
Febrile neutropenia	27	26
Dyspnea	23	5
Pyrexia	23	4
Cough	22	o
Vomiting	20	1
Constipation	19	<1
Anemia	18	12
Peripheral edema	18	2
Thrombocytopenia	16	12

CT Chest – February 11, 2016

- Started Dexamethasone 10mg bid with rapid resolution of symptoms
- Rapid taper of dex without recurrence of symptoms

CPX-351 Uses a Nano-Scale Delivery Complex

- •100-nm bilamellar liposomes
- •5:1 molar ratio of cytarabine to daunorubicin
- •1 unit = 1.0 mg cytarabine plus 0.44 mg daunorubicin

CPX-351: Phase 2 trial vs ARA-C / DNR in older adults with untreated AML

n=127 randomized 2:1 to CPX-351 or 3+7

	CPX-351*	3+7	Ρ
CR, n (%)	41/84 (48.8%)	20/41 (48.8%)	
CRi, n (%)	15/84 (17.9%)	1/41 (2.4%)	
Overall, n (%)	56/84 (66.7%)	21/41 (51.2%)	0.07

*Liposomal formulation of daunorubicin and cytarabine at an "optimal" (1:5) molar ratio

CPX-351: Phase 2 trial vs ARA-C / DNR in older adults with untreated AML

CPX-351: Phase 2 trial vs ARA-C / DNR in older adults with untreated AML

Phase 3 study: Open-label, randomized Phase 3 study of CPX-351 vs daunorubicin (60 mg/m²)-cytarabine for sAML in patients aged 60–75 years¹

CPX-351 significantly improves response rate over 3+7 in FLT3-ITD^{mut} AML

	CR+CRi r		
Group	CPX arm	3+7 arm	P-value
FLT3 ^{mut} (all)	15/22 (68.2)	5/20 (25.0)	0.007
FLT3 ITD+	12/19 (63.1)	3/13 (23.0)	
FLT3 TKD+	3/3 (100)	2/7 (28.6)	

New Drugs – FLT3 Inhibitors

- •Leustartinib (CEP-701)
- •Midostaurin (PKC-412)
- Sorafenib
- •Quizartinib (AC220)
- Crenolanib
- •Gilteritinib

A randomized assessment of adding the kinase inhibitor lestaurtinib to first-line chemotherapy for FLT3-mutated AML

Steven Knapper,¹ Nigel Russell,² Amanda Gilkes,³ Robert K. Hills,⁴ Rosemary E. Gale,⁵ James D. Cavenagh,⁶ Gail Jones,⁷ Lars Kjeldsen,⁸ Michael R. Grunwald,⁹ Ian Thomas,⁴ Heiko Konig,¹⁰ Mark J. Levis,¹¹ and Alan K. Burnett¹

AML15,17 Lestaurtinib Randomisation Overall Survival

AML15,17 Lestaurtinib Randomisation Relapse Free Survival

Knapper et al. Blood 2017.

Leustartinib

•No clinical benefit seen after the addition of leustartinib to CHT

•Lower relapse rate and improved OS in those achieving sustained levels of FLT3 plasma inhibitory activity

RATIFY: Study design

*Hydroxyurea allowed for \leq 5 days prior to induction therapy.

- Double-blind, placebo-controlled, randomized phase III study
 - Primary endpoint: OS (not censored for SCT)

Overall survival (primary endpoint) 23% reduction in risk of death in midostaurin arm

Median OS: midostaurin 74.7 months (31.7–NE); placebo 25.6 months (18.6–42.9)

Overall survival censoring patients at transplant

AMLSG 16-10

- * Patients may receive hydroxyurea during screening phase
- ** Optional 2nd cycle in patients achieving PR after cycle I
- *** Cytarabine: 18-65 years, 3g/m², q12hr, day 1,3,5; >65 years, 1g/m², q12hr, day 1,3,5; optional for patients before allogeneic HSCT

PKC-412: points for considerations

•We don't know how mido exactly works

- Primarily FLT3 inhibitor?
- Anthracycline enhancer?
- •Does it work in ITD low burden status?
- •Does it work in FLT3mut/NPM1mut AML?
- •Will PKC-412 treatment benefit everyone equally?
 - RATIFY trial not powered to look at patients subsets

Anti-CD33 mAbs

SGN-CD33A mAb (vadastuximab talirine)

- Fully humanized anti-CD33 mAb linked with a pyrrolobenzodiazepine dimer (PBD), which binds DNA with high intrinsic affinity
- In xenotransplanted mice, it exhibits a potent cytotoxicity against p53 mutated or MDR-1 efflux positive AML cells
- It exhibits synergy with HMAs to enhance anti-leukemic activity
- CR rate 29% in a escalating Phase 1 study of relapsed/refractory AML

Anti-CD33 mAb: SGN-CD33A + HMA

Phase I study of SGN-CD33A in combination with an HMA (AZA or DAC) (NCT01902329)

Treatment and patients	Outcomes
 SGN-CD33A 10 µg/kg IV, every 4 weeks on the last day of HMA 	 49/53 evaluable for efficacy 37/49 (76%) achieved CR + CRi + PR (1) Median time to response: 2 cycles
53 patients treatedMedian age: 75 years	 13/17 (76%) with adverse cytogenetic risk achieved remission
 Median BM blast infiltration:	 Median RFS in CR / CRi patients: 6.9
46%	months
 5 patients (9%) previously	 37 pts (70%) still alive with a median
treated	follow-up of 4.9 months
 19 patients (36%) with adverse	 Combination well tolerated and capable of
cytogenetics risk	inducing deep and durable remission

SGN-CD33A + HMA: OS by age

Fathi et al. EHA 2016. Abstract S503. Fathi et al. ASH 2016. Abstract 591.

SGN-CD33A + HMA: OS by MRD status

Fathi et al. EHA 2016. Abstract S503. Fathi et al. ASH 2016. Abstract 591.

Anti-CD33 mAb

NOTE: Some Phase 1 studies of SGN-CD33A have been put on hold after 6 patients were identified with hepatotoxicity, including several cases of veno-occlusive disease, with 4 fatal events

Venetoclax + low-dose cytarabine in treatmentnaïve AML patients aged ≥ 65 years

- Venetoclax 600 mg orally once daily on days 2–28 of Cycle 1 and days 1–28 of subsequent cycles
- A 5-day dose ramp-up schedule was followed to reach the 600 mg dose
- LDAC 20 mg/m² was administered s.c. daily on days 1–10 in 28day cycles
- 20 patients enrolled
 - > n=8 in an escalation phase
 - > n=12 in an expansion phase
- Median age: 74 years (range 66–87)
- 8/20 patients (40%) had an antecedent hematologic disorder

Venetoclax + low-dose cytarabine in treatmentnaïve AML patients aged ≥ 65 years

	All patients n=20	Prior HMA n=2	No prior HMA n=18	Prior MPN n=2	No prior MPN n=18
ORR (CR + CRi + PR), n (%)	15 (75%)	2 (100%)	13 (72%)	0	15 (83%)
12-month OS estimate (95% CI)	74.7% (49.4–88.6)	NA	71.8% (44.9–87.2)	NA	83.3% (56.8–94.3)

ORR and 12-month OS estimates

OS in responders vs non-responders

Wei et al. ASH 2016. Abstract 102.

New Drugs in AML – Conclusions

- •1998–2017, 4 drugs registered for AML therapy
 - GO (withdrawn, re-filed)
 - AZA
 - DAC
 - Midostaurin (approved by FDA pending with EMEA)
- •Enroll into clinical trials
- •Pivotal role of cooperative groups
 - Scientific questions
- Post-marketing studies
 - Long-term efficacy / toxicity of registered drugs